KEW RIVERSIDE PRIMARY SCHOOL

Calculation Policy

KEW RIVERSIDE PRIMARY SCHOOL

Aims: Here at Kew Riverside, we are enthusiastic, risk-taking mathematicians. Mathematics is a core subject of the National Curriculum and a tool for everyday life. It teaches children to make sense of the world around them through developing their ability to calculate, to reason and to problem solve.

At Kew Riverside, children develop skills, confidence and competence in mathematics. Through a shared ethos of passion and positivity, our children and staff cultivate a love of mathematics and a thirst for knowledge and challenge. Our classroom environments encourage exploration, questioning and mathematical talk as well as opportunities for children to develop and apply their ideas while making connections to the world around them.

By using a 'Maths Mastery Approach' and following the White Rose Primary Scheme of Learning, we ensure pupils develop deep understanding through small steps and opportunities to learn using concrete (manipulatives), pictorial and abstract (written) representations. Pupils who grasp concepts rapidly are challenged with rich and sophisticated problems, in order to prove depth of understanding, before any acceleration through new content. Those who are unable to prove fluency in a concept are given opportunities to consolidate and refine their understanding before moving on.

recognising numerals, counting accurately with objects, understanding concepts of addition, subtraction, multiplication and division through practical activities and using mathematical vocabulary. By the end of EYFS children should be able to count reliably with numbers from 1 to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Key Stage 1 (taken from the Mathematics Curriculum 2014) The principle focus of mathematics in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources.

By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value.

Lower Key Stage 2 (taken from the Mathematics Curriculum 2014) The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.

At this stage, pupils should develop their ability to solve problems, including with decimal place value. By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.

Upper Key Stage 2 (taken from the Mathematics Curriculum 2014) The principle focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.

Problems will demand efficient written and mental methods of calculation. Pupils are introduced to the language of algebra. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division.

KEW RIVERSIDE PRIMARY SCHOOL

Progression in number lines

EYFS	Number track	Has the numbers inside the sections, rather than on the divisions	0	1	2	3	4	5	6	7	8	9	10
End of EYFS and moving towards year 1 expectation	Calibrated, numbered numberline	Equal divisions marked on the numberline and each division is numbered							6	7	8		10
Year 1 - National age related expectation	Calibrated, unnumbered numberline	Equal divisions are marked, but left unnumbered for children to add relevant numbers to											
Year 2 - National age related expectation	Blank numberline	No divisions or numbers marked for the children											

KS2- Don't underestimate the importance of number lines in KS2. If students understand how to manipulate number lines, they're more likely to succeed throughout KS2 by using number line strategies- especially with mental calculations. Always ask yourself- do you need columns (where simple calculation mistakes can be made) or would it be better on a number line?

KEW RIVERSIDE PRIMARY SCHOOL

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Adding three single digits. Use of base 10 to combine two numbers.	Column methodregrouping. Using place value counters (up to 3 digits).	Column methodregrouping. (up to 4 digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.

Conceptual variation; different ways to ask children to solve $21+34$

Word problems: In year 3, there are 21 children and in year 4 , there are 34 children. How many children in total? $21+34=55 \text {. Prove it }$	$\begin{aligned} & 21 \\ & \underline{+34} \\ & \overline{21+34=} \\ & -\cdots=21+34 \end{aligned}$ Calculate the sum of twenty-one and thirty-four.	Missing digit problems:	
		10s	1s
		0	(1)
		$\bigcirc \bigcirc$?
		?	5

KEW RIVERSIDE PRIMARY SCHOOL

Year 1			
Addition - read, write and interpret mathematical statements involving addition (+) and equals (=) signs - represent and use number bonds - add one-digit and twodigit numbers to 20 , including zero - solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems as seem below			
	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part whole model.	Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Starting at the bigger number and counting onusing cubes.	Counting on using number lines using cubes or Numicon. Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	A bar model which encourages the children to count on, rather than count all. $12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$ $5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

KEW RIVERSIDE PRIMARY SCHOOL

Year 2

Addition

- solve problems with addition: - using concrete objects and pictorial representations, - applying their increasing knowledge of mental and written methods - recall and use addition facts to 20 fluently, and derive and use related facts up to 100 -add and numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \end{aligned}$ $22-5=17$
Use of base 10 to combine two numbers.	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$

Use of base 10 to
combine two two
digit numbers.

KEW RIVERSIDE PRIMARY SCHOOL

Year 3			
Addition - add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds - add and subtract and use inverse operations to check answers solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction			
	${ }^{\text {Concrecte }}$	${ }^{\text {Pictorial }}$	${ }^{\text {Abstrat }}$
$\begin{array}{\|l} \hline \text { Expanded } \\ \text { column } \\ \text { addition } \end{array}$		$\begin{aligned} & 356+213= \\ & 356 \geq 300+50+6 \\ & +\frac{213}{569} \underline{200+10+3} \\ & \hline 500+60+9 \\ & \hline \end{aligned}$	$\begin{aligned} & 353+268=621 \\ & 300+50+3 \\ & \frac{200+60+8}{\frac{600+20+1}{100}}=621 \end{aligned}$
			243
	100 s 10 s 1 l	$\bigcirc 00000$	+368
$\underbrace{}_{\substack{\text { Using } \\ \text { pacee }}}$	$\stackrel{0}{\circ 0}$	000 8000	611
	$000 \cdot 1.8$	-	611
			11

	KEW RIVERSIDE PRIMARY SCHOOL
Mental Strategies	- Add numbers mentally, including: a three-digit number and a single digit number a 3-digit number and multiples of 10 a 3-digit number and multiples of 100 - Estimate the answer to a calculation and use inverse operations to check answers - Know number pairs that total 1000 (multiples of 100) Calculate 10 or 100 more than any given number (See KIRFs)
Vocabular y	add, increase, total, plus, sum, more, altogether, column addition, estimate, inverse, double, near double, one more, ten more... one hundred more, how many more to make ...? how many more is... than ...? how much more is....?, tens boundary, hundreds boundary

KEW RIVERSIDE PRIMARY SCHOOL

Year 4

Addition

- add numbers with up to 4 digits using the formal written methods of columnar addition and where appropriate - estimate and use inverse operations to check answers to a calculation - solve addition and solve two-step problems in contexts, deciding which operations and methods to use and why.

KEW RIVERSIDE PRIMARY SCHOOL

Year 5

-add whole numbers with more than 4 digits, including using formal written methods (columnar addition) - add numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve multistep problems in contexts, deciding which operations and methods to use and why

Mental Strategies	- Add numbers mentally with increasinglyargenumbers whole numbers and tenths $(8+0.3=8.3)$ - Use number bonds to 100 knowledge to calculate complements to one using hundredths (e.g $0.83+$ $0.17=1) ~-~ U s e ~ r o u n d i n g ~ t o ~ c h e c k ~ a n s w e r s ~ t o ~ c a l c u l a t i o n s ~ a n d ~ d e t e r m i n e, ~ i n ~ t h e ~ c o n t e x t ~ o f ~ a ~ p r o b l e m, ~ l e v e l s ~ o f ~ a c c u r a c y ~(S e e ~ K I R F s) ~$
Vocabulary	Efficient written method, add, addition, more, plus, increase, sum, total, altogether, score, tens boundary, hundreds boundary, thousands boundary, units boundary, tenths boundary, inverse

KEW RIVERSIDE PRIMARY SCHOOL

Year 6

Addition

- solve multi-step problems in contexts, deciding which operations and methods to use and why - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Algebra - use simple formulae - express missing number problems algebraically - find pairs of numbers that

Negative numbers			$-4+6=\mathrm{OOL}$
Mental Strategies	- Add numbers mentally with increasingly large numbers (e.g 10,162 + 2,300 = 12,462) - Add decimal numbers mentally (up to 2 decimal places) - Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy. (See KIRFs)		
Vocabulary	order of operations, column addition, add, in total, answer, tens boundary, hundreds boundary, thousands boundary, millions boundary, units boundary, tenths boundary, hundredths boundary, decimal place, inverse		

KEW RIVERSIDE PRIMARY SCHOOL

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10 Use of base 10	Column method with regrouping. (up to 3 digits using place value counters)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.

Conceptual variation; different ways to ask children to solve 391-186

391	
186	$?$

Raj spent $£ 391$, Timmy spent $£ 186$.	$=391-186$
How much more did Raj spend?	391
Calculate the difference between 391 and	
186.	$\underline{-186}$
	-

What is 186 less than $391 ?$

Missing digit calculations

KEW RIVERSIDE PRIMARY SCHOOL

Year 1			
Subtraction - read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs - represent and use number bonds and related subtraction facts within 20 - subtract one-digit and two-digit numbers to 20 , including zero - solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$.			
	Concrete	Pictorial	Abstract
Taking away ones Counting back	rnysıcauy takıng away ano removing oojects rrom a wnoie (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$ Counting back (using number lines or number tracks) children start with 6 and count back 2 . $6-2=4$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. Children to represent what they see pictorially e.g.	4-3= Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Find the difference

KEW RIVERSIDE PRIMARY SCHOOL

Year 2

- solve problems with subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures -applying their in creasing knowledge of mental and written methods - recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100 - subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two twodigit numbers - show that subtraction has to be done in the order stated - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Subtraction			
	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & \sum_{3}^{38} \sum_{3}^{3} \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to par tition the number when subtracting ing.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$

Find the difference	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).	TIDE PRIMARY SCHOOI	
	Calculate the difference bewreen 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is Children to explore why $9-6=8-5=7-4$ have the same difference.
Make 10 Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	\qquad	Children to present the ten frame pictorially and discuss what they did to make 10 .	Children to show how they can make 10 by partitioning the subtrahend. $14-5=9$ $14-4=10$ $10-1=9$
	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

Mental Strategies	- To know that subthactionis the inversé of addition- Use knpwledgefof inuerse to chegk cal cullations and solve missing number problems - Subtract numbers mentally, including: 回 subtracting units from a 2-digit number subtracting a multiple of 10 from a 2-digit number 国 subtracting a 2 -digit number from another 2-digit number - Recall and use subtraction facts to 20 fluently - Use knowledge of number bonds to 100 (multiples of 10) to reason $(40+60=100$ so $100-60=40$ and $100-40=60)$ (See KIRFs)
Vocabulary	subtract, minus, leave, how many are left/left over?, how many less is... than...?, how much fewer is...?, difference between, half, halve, equals, sign, is the same as, partition, inverse, count on , count back, one less, ten less... one hundred less.

KEW RIVERSIDE PRIMARY SCHOOL

Year 3

Subtraction

- subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds - subtract numbers with up to three digits, using formal written methods of columnar subtraction - estimate the answer to a calculation and use inverse operations to check answers - solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column method with regrouping. (up to 3 digits using place value counters)	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns $\begin{array}{ccc} 728 & -582 & =146 \\ n & & 4 \\ { }^{7} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Then move to formal method.

Mental Strategies	from a 3-digit number. Subtracting a multiple of 10 from a 3-digit number - Estimate the answer to a calculation and use inverse operations to check answer (See KIRFs)
Vocabulary	leave, subtract, less, minus, column subtraction, inverse, decomposition, exchange, how many are left/left over?, difference between, how many more/fewer is... than...?, how much more/less is...?, Is the same as, equals, sign. multiples of tens and hundreds.

KEW RIVERSIDE PRIMARY SCHOOL

Year 4			
Subtraction - subtract numbers with up to 4 digits using the formal written methods of columnar subtraction where appropriate - estimate and use inverse operations to check ans wers to a calculation - subtraction two-step problems in contexts, deciding which operations and methods to use and why.			
	Concrete	Pictorial	Abstract
Column method with regrouping. (up to 4 digits) Introduce decimal subtraction through context of money	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Represent the base 10 pictorially, rememberin: the exchange.	Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.
Mental Strategies	- Subtract numbers mentally, including: - Sub of 10) to calculate subtraction (e.g 1000-300	tracting multiples of one thousand from a 4-d $00=700)$ - Estimate the answer to a calculation	it number - Use of number pairs that total 1000 (multiples nd use inverse operations to check answers. (See KIRFs)

KEW RIVERSIDE PRIMARY SCHOOL

Year 5										
- subtract whole numbers with more than 4 digits, including using formal written methods - subtract numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve multistep problems in contexts, deciding which operations and methods to use and why.										
	Concrete						Pictorial			Abstract
Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places	Column $234-8$ 100 s 00 	metho 105 000 	od using place valu					the pla ing to s 10s 000	value counters pictorially; ow what has been exchanged.	Formal colum method. understand what has ha they have crossed out c
Mental Strategies	- Subtract increasingly large numbers mentally (e.g 12, 654-1,341 = 11, 213) - Mentally subtract tenths (e.g 0.7-0.5 = 0.2) and 1-digit whole numbers and tenths ($8-0.3=7.7$) - Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy (See KIRFs)									
Vocabulary	efficient written method, subtract, subtraction, minus, decrease, difference between, inverse, decimals, units and tenths boundary, column subtraction, decomposition, exchange.									

KEW RIVERSIDE PRIMARY SCHOOL

KEW RIVERSIDE PRIMARY SCHOOL

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
등 .9 $\frac{9}{0}$ $\frac{.0}{9}$ $\frac{2}{2}$	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays $2 \mathrm{~d} \times 1 \mathrm{~d}$ using base 10	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)

Conceptual variation; different ways to ask children to solve 6×23

							23	23	23	23	23	23

?

Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?	$6 \times 23=$
	Find the product of 6 and 23
With the counters, prove that 6×23	
$=138$	

What is the calculation? What is the product?

100s	10s	1s
	88	000
	88	000
	88	808
	88	008
	80	00

KEW RIVERSIDE PRIMARY SCHOOL

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{EYFS/ Year 1}

\hline \multicolumn{4}{|l|}{Multiplication}

\hline \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities using manipultives including cubes and Numicon to demonstrate doubling \& \begin{tabular}{l}
Draw pictures to show how to double numbers

Double 4 is 8

\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline
\end{tabular}

KEW RIVERSIDE PRIMARY SCHOOL

Year 2

Multiplication

- recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times) and equals ($=$) signs - show that multiplication of two numbers can be done in any order (commutative) - solve problems involving multiplication using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts.

	Concrete	Pictorial	Abstract
Arraysshowing commutative multiplication	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
	Create arrays using counters cubes to show multiplication sentences. $4 \times 6=24$ Begin to look at arrays in different orientations to make the link between, for example, $5 \times 3=15$ and $3 \times 5=15$ (commutativity)	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{gathered} 00000 \\ 00000 \\ 00000 \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$

Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$2 \times 4=8$ $4 \times 2=8$ $8 \div 2=4$ $8 \div 4=2$ $8=2 \times 4$ $8=4 \times 2$ $2=8 \div 4$ $4=8 \div 2$ Show all 8 related fact family sentences.
Mental Strategies	- Count forwards and backwards in multiples of 3. - Know the 2, 5 and 10 times tables (in and out of order) - Recognise odd and even numbers (See KIRFs)		
Vocabulary	odd, even, twos, fives, tens, threes, lots of, groups of, once, twice, three times, five times, ten times, multiple of, times, multiply, multiply by, repeated addition, array, row, column, double.		
Times Tables	2, 5, 10		

Year 3

Multiplication

- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables - write and calculate mathematical statements for multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods - solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

	Concrete	Pictorial	Abstract
Arrays $2 \mathrm{~d} \times 1 \mathrm{~d}$ using base 10	Partition to multiply using Numicon, base 10 or Cuisenair rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \quad 5 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used

Mental Strategies	- Count forwards and backwards ih nd out of order) - Connect the 2,4 and 8 times tables through doubling - Use knowledge of place value to calculate multiplication (e.g. 2×2 $2 \times 200=400$ (See KIRFs)
Vocabular y	multiply, times, groups of, equal groups of, multiple of, multiplied by, estimate, inverse, grid multiplication, expanded column multiplication, partition, commutative, associative, product.
Times Tables	Consolidate- 2, 5, 10 Learn- 3, 4, 8

KEW RIVERSIDE PRIMARY SCHOOL

Year 4							
- recall multiplication tables up to 12×12 - use place value, known and derived facts to multiply mentally, including: multiplying by 0 and 1 ; multiplying together three n umbers - recognise and use factor pairs and commutativity in mental calculations - multiply two-digit and three- digit numbers by a onedigit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply two di git numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.							
	Concrete ${ }^{\text {a }}$ Pictorial						Abstract
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	Bar modelling learners when tion alongside	my b nal wri	80 sed to met In. r line blem writt	ow how this d. 1 an support ith multiplicamethods.	,	

KEW RIVERSIDE PRIMARY SCHOOL

Year 5

Multiplication

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, pri me factors and composite (non-
prime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for two-
digit numbers - multiply numbers mentally drawing upon known facts - multiply and whole numbers and those involving decimals by 10,100 and 1000 recognise and u se square numbers and cube numbers, and the notation for squared (2) and cubed (3) - solve problems involving multiplication including using their knowledge of facto rs and multiples, squares and cubes - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding th e meaning of the equals sign - solve problems involving multiplication and division, including scaling by simple fractions and problems involving

	KEVNRIVERSIDEPR
Mental Strategies	- Recognise and calculate factor pairs for any number - Use times table knowledge to derive multiples of any number - Establish whether a number is a prime number (up to 100) or a composite number (not prime) and recall prime numbers up to $19-$ To know what a square number is and recall all square numbers (up to and including 144) - To know what a cube number is and recall the first 5 cube numbers (See KIRFs)
Vocabulary	composite numbers, prime number, prime factor, cube number, square number, derive, factor pairs, formal written method, times, multiply, multiplied by, multiple of, product, short multiplication, partition, long multiplication, scaling, decimal place, units, tenths and hundreds.
Times Tables	Know all times tables up to and including 12×12 and related division facts

KEW RIVERSIDE PRIMARY SCHOOL

Year 6			
Multiplication - multiply multi-digit numbers up to 4 digits by a two digit whole number using the formal written method of long multiplication - perform mental calculations, including with mixed operations and large numbers - identify common factors, common multiples and prime numbers - use their knowledge of the order of operations to carry out calculations involving the four operations - use es timation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Ratio \& Proportion - solve problems involving the relative sizes of two quantities where missing values can be found by using integer - multiplication and division facts - solve problems involving the calculation of pe rcentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison - solve problems involving similar shapes where the scale fact or is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples. Algebra - use simple formulae - expre ss missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns			
	Concrete	Pictorial	Abstract
Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)	1224 $\times \quad 2 \quad 6$ 7444 24480 322 14 Answer: 3224	When To get To get	$3 \mathrm{~d} \times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract: $\begin{aligned} & \text { ed } 6 \times 124 \\ & 20 \times 124 \end{aligned}$

Multiplying decimals up to 2 decimal places by a single digit.	KFW RIVFRSIDF PRIMARY SCHOOL Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer.
Mental Strategies	- Use scaling to solve decimal number problems as whole number problems using the rule: 'the number of decimal digits in the question is the same as the number of decimal digits in the answer' - Identify common factors, common multiples and prime numbers - Use common factors to simplify fractions mentally - Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy (See KIRFs)
Vocabulary	common factors, multiples, prime, formal written method, multiply, multiplied by, multiple of, product, short and long multiplication, partition, scaling, decimal place, units, tenths and hundreths.
Times Tables	Know all times tables up to and including 12×12 and related division facts/ powers/ square roots/ BODMAS

KEW RIVERSIDE PRIMARY SCHOOL

	EYFS/Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \text { Co } \\ & \hline 0 \\ & \hline 0 \end{aligned}$	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. $2 d$ divided by 10 using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Conceptual variation; different ways to ask children to solve $615 \div 5$

KEW RIVERSIDE PRIMARY SCHOOL

EYFS/ Year 1			
Division - solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.			
	Concrete	Pictorial	Abstract
Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes at a time.	Sharing using a range of objects. $6+2$	Represent the sharing pictorially.	$6 \div 2=3$3 3 Children should also be encouraged to use their 2 times tables facts.
Mental Strategies	Count forwards and backwards in multiples of 2s, 5s and 10s. (See KIRFs)		
Vocabulary	halve, share, share equally, groups, equal groups of, divide, divided by, left, left over		

KEW RIVERSIDE PRIMARY SCHOOL

Year 2					
- recall and use division facts for the 2,5 and 10 multiplication tables - calculate mathematical statements for division within the multiplication tables and write them using division (\div) and equals ($=$) signs - show that division of one number by another must be done in the order stated - solve problems involving division, using materials, arrays, repeated subtraction, mental methods, and division facts, including problems in contexts.					
	Concrete	Pictorial ${ }^{\text {abstract }}$			
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding.			$12 \div 3=4$

KEW RIVERSIDE PRIMARY SCHOOL

Year 3

Division

- recall and use division facts for the 3,4 and 8 multiplication tables - write and calculate mathematical statements for division using the multiplication tables that know, including for two-digit numbers times one-

Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

KEW RIVERSIDE PRIMARY SCHOOL

Mental Strategies	KEW RIVERSIDE PRIMARY SCHOOL Know all related division facts for all times tables up to 12 times table (by the end of Year 4) (See KIRFs)
Vocabulary	factor, divisor, divided by, divided into, remainders, divisible by, equivalent, short division, derive, Quotient, inverse, remainder,multiples, exchange. Division bracket divisor $\frac{\text { quotient }}{\text { Jdividend }}$

KEW RIVERSIDE PRIMARY SCHOOL

KEW RIVERSIDE PRIMARY SCHOOL

Year 6

Division

- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and - - interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where - - appropriate, interpreting remainders according to the context - perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the four operations - solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Ratio \& Proportion solve problems involving the relative sizes of two quantities where missing values can be found by using integer - multiplication and division facts - solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison - solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

Algebra - use simple formulae - express missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns

	Concrete	Pictorial	Abstract
Short division	Long divis		

Long division with place value counters (up to 4 digits by a 2 digit number)

Children should exchange into the tenths and hundredths column too
$2544+12$

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.
25
1

	1000 s 1000s	100 s 8088 8086 8080 8808 8808	$10 s$ 8808 \square 8 \qquad 10s 8088		After exchanging the hundred, wehave 14 tens. We can group 12 tensinto a group of 12 , which leaves 2 tens.$\frac{021}{2544}$
Mental Strategies	- Use esti a fraction	ation to of an amo	eck an nt (See	swers KIRFs)	culations and determine, in the context of a problem, levels of accuracy - Calculate
Vocabulary	divide, divid scaling, fo	ded by, mal writt	ided in meth	to, divisib divi ods.	by, remainder, factor, quotient, inverse, decimal place, units, tenths, hundredths, $\text { or } \frac{\text { quotient }}{\text {)dividend }}$

KEW RIVERSIDE PRIMARY SCHOOL

Key Instant Recall Facts (KIRFs)
By the end of an academic year, pupils should be able to recall the Key Instant Recall Facts for their year group quickly (within 5 seconds) and complete counting activities confidently and fluently. Children should also be able to recall the Key Instant Recall Facts for all previous year groups within the same amount of time.

Year 1	Autumn 1 Autumn 2 Spring 1 Spring 2 Summer1 Summer 2	I know number bonds to 6 I can count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s I know doubles and halves of numbers to 10 I know number bonds to 10 I know the days, weeks, months and seasons. I know my number bonds for each number to 10
Year 2	Autumn 1 Autumn 2 Spring 1 Spring 2 Summer1 Summer 2	I know number bonds to 20. I know the multiplication and division facts for the 2 times table. I know double and halves to 20 I know the multiplication and division facts for the 10 times table. I can tell the time to the nearest 5 minutes I know the multiplication and division facts for the 5 times table.

KEW RIVERSIDE PRIMARY SCHOOL

Year 3	Autumn 1 Autumn 2 Spring 1 Spring 2 Summer1 Summer 2	I know number bonds for all numbers to make 20. I know the multiplication and division facts for the 3 times table. I can recall facts about durations in time. I know the multiplication and division facts for the 4 times table. I can tell the time to the nearest minute. I know the multiplication and division facts for the 8 times table.
Year 4	Autumn 1 Autumn 2 Spring 1 Spring 2 Summer1 Summer 2	I know number bonds for all numbers to make 100. I know the multiplication and division facts for the 6 times table. I know the multiplication and division facts for the 9 and 11 times tables. I can recognise decimal equivalents of fractions. I know the multiplication and division facts for the 7 times table. I can multiply and divide single-digit numbers by 10 and 100.
Year 5	Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2	I know decimal number bonds 101 and 10 I know multiplication and division facts up to 12×12 I can recall metric conversions. I can identify prime numbers up to 20 I can recall square numbers up to 12 squared and their square roots. I can find factor pairs of a number.
Year 6	Autumn 1	I know multiplication and division facts up to 12×12

Topic	Facts taught in this year group	Facts taught in previous year groups
Number and Place Value	- Count to and across 100, forwards and backwards, from 0,1 or any number. - Count, read and write numbers to 100 in numerals. - Read and write numbers from 1 to 20 in words. - Identify one more and one less than any number (to 100).	- Read and write numbers from 1 to 20 in numerals - Identify one more and one less than any number (to 20) - Ordinal numbers ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$)
Addition and Subtraction	- Be able to work out number bonds to all numbers within 10. - Be able to work out number bonds to 10.	
Multiplication and Division	- Count in $2 s$ to 20,5 to 50 and 10 s to 100.	
Measurement	- Know how many days are in a week - Know how many months are in a year. - Know when key events happen (eg. Christmas)	- Know the days of the week in order - Know the months of the year in order.
Properties of Shapes		- Recognise and name 2D shapes (rectangles, squares, circles and triangles). - Recognise and name 3D shapes (cubes, cuboids, pyramids and spheres).

Topic	Facts taught in this year group	Facts taught in previous year groups
Number and Place Value	- Count forwards and backwards in 3s from 0. - Count forwards and backwards in 10s from any number. - Read and write numbers to 100 in words. - Recognise odd and even numbers to 100	- Count forwards and backwards in $2 s$ and $5 s$ from 0. - Read and write numbers to 100 in numerals.
Addition and Subtraction		- Know number bonds to all numbers within 10. - Know number bonds to 10.
Multiplication and Division	- Know doubles and halves to 20. - Know multiplication and division facts for the 2,5 and 10 times tables.	- Count in 2 s to 20,5s to 50 and 10s to 100.
Measurement	- Know the number of minutes in an hour. - Know the number of hours in a day.	- Know the value of all coins and notes
Properties of Shapes		- Recognise and name 2D shapes (rectangles, squares, circles and triangles). - Recognise and name 3D shapes (cubes, cuboids, pyramids and spheres).

KEW RIVERSIDE PRIMARY SCHOOL

Topic	Facts taught in this year group	Facts taught in previous year groups
Number and Place Value	- Count, from 0, in 3s to $36,4 s$ to 48 and $8 s$ to 96. - Count in 50s and 100s. - Read and write numbers to 1,000 in numerals and words. - Know that there are 10 tens $=100$.	- Recognise odd and even numbers.
Addition and Subtraction		- Know number bonds to all numbers within 10. - Know number bonds to 10.
Multiplication and Division	- Know multiplication and division facts for the 3, 4 and 8 times tables. - Divide 10 by 2, 5 and 10 (to support reading scales).	- Know multiplication and division facts for the 2,5 and 10 times tables.
Fractions	- Count in 10ths. - Make a whole from fractions eg. $\frac{2}{2}, \frac{3}{3}$ etc.	
Measurement	- Know the number of seconds in a minute. - Know the number of days in each month. - Know the number of days in a year and a leap year.	
Properties of Shapes		- Recognise and name 2D shapes (rectangles, squares, circles and triangles). - Recognise and name 3D shapes (cubes, cuboids, pyramids and spheres).

KEW RIVERSIDE PRIMARY SCHOOL

Year 4

Topic	Facts taught in this year group	Facts taught in previous year groups
Number and Place Value	- Count in 25s and 1,000s. - Know 10 hundreds $=1,000$.	- Recognise odd and even numbers.
Addition and Subtraction		- Know number bonds to all numbers within 10. - Know number bonds to 10.
Multiplication and Division	- Know multiplication and division facts for all times tables to 12×12. - Divide 1,000 by $2,4,5,10$ (to support reading scales).	- Know multiplication and division facts for 2, 5, 10, 3, 4 and 8 times tables.
Fractions	- Count in 100ths. - Recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$.	
Measurement	- Know that: $>1 \mathrm{~cm}=10 \mathrm{~mm}$ $>1 \mathrm{~m}=100 \mathrm{~cm}$ $\rightarrow 1 \mathrm{~km}=1000 \mathrm{~m}$ $>1 \mathrm{~kg}=1000 \mathrm{~g}$ $\rightarrow 1 \mathrm{~L}=1000 \mathrm{ml}$ - Know that: $>1 \mathrm{hr}=60$ minutes $\rightarrow 1 \mathrm{~min}=60$ seconds $\rightarrow 1$ year $=12$ months >1 week $=7$ days	

KEW RIVERSIDE PRIMARY SCHOOL

Year 5

Topic	Facts taught in this year group	Facts taught in previous year groups
Number and Place Value	- Recognise odd and even numbers. - Know that: > 10 tenths = 1 >100 hundredths $=1$ >10 hundredths $=1$ tenth	
Addition and Subtraction		- Know number bonds to all numbers within 10. - Know number bonds to 10.
Multiplication and Division	- Know prime number to 19. - Know square numbers to 12^{2}. - Divide 1 by 2, 4, 5 and 10 (to support reading scales).	- Know multiplication and division facts for all times tables to 12×12.
Fractions	- Know percentage and decimal equivalents to $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5} \cdot \frac{4}{5}$ and fractions with denominators that are multiples of 10 and 25 .	
Measurement		- Know that: $\rightarrow 1 \mathrm{~cm}=10 \mathrm{~mm}$ $\rightarrow 1 \mathrm{~m}=100 \mathrm{~cm}$ $>1 \mathrm{~km}=1000 \mathrm{~m}$ $>1 \mathrm{~kg}=1000 \mathrm{~g}$ $>1 \mathrm{~L}=1000 \mathrm{ml}$ - Know that: $>1 \mathrm{hr}=60$ minutes $\rightarrow 1 \mathrm{~min}=60$ seconds >1 year $=12$ months

KEW RIVERSIDE PRIMARY SIWdet \bigoplus @ay.

Year 6

Topic	Facts taught in this year group	Facts taught in previous year groups
Number and Place Value		- Recognise odd and even numbers.
4 Operations	- Know the order of operations (BIDMAS). - Divide $1,10,100$ and 1,000 by 2, 4, 5 and 10 (to support reading scales).	- Know number bonds to all numbers within 10. - Know number bonds to 10. - Know multiplication and division facts for all times tables to 12×12. - Know prime number to 19. - Know square numbers to 12^{2}.
Fractions	- Know percentage and decimal equivalents to $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and fractions with denominators that are multiples of 10 and 25 .	
Measurement	- Know that: $\rightarrow 8 \mathrm{~km}=5$ miles	- Know that: $>1 \mathrm{~cm}=10 \mathrm{~mm}$ $>1 \mathrm{~m}=100 \mathrm{~cm}$ $\rightarrow 1 \mathrm{~km}=1000 \mathrm{~m}$ $>1 \mathrm{~kg}=1000 \mathrm{~g}$ $>1 \mathrm{~L}=1000 \mathrm{ml}$ - Know that: > $1 \mathrm{hr}=60$ minutes $>1 \mathrm{~min}=60$ seconds $\rightarrow 1$ year $=12$ months

	KEW RIVERSIDE PRIMARY	S1week \rightarrow day
Properties of Shapes	- Know the names of all parts of a circle (radius, diameter, circumference). - Know that the diameter is double the radius. - Know that the radius is half the diameter.	- Know that there are 360° in a full turn. Know that there are 180° on a straight line.

